2023年4月

提起超音速冲击波,我们可能下意识会联想到核爆炸、喷气式战斗机、火箭发射等。这些能量瞬间爆发的过程,无论怎么看,都与开香槟相去甚远。但有趣的是,据“香槟学”研究显示,香槟开瓶很像是一次迷你火箭发射,二者均会产生超音速冲击波。

一阵猛烈摇晃之后,我们紧盯着香槟酒瓶,期待着瓶塞在下一秒就弹射出去。随着“砰”的一声,酒液和泡沫喷涌而出,人群中也爆发出欢呼声 —— 这是庆祝活动中常见的一幕。但是这并非打开香槟的正确方式,反而相当危险,每年都有人因此受伤。

让我们重新来过,不去摇晃香槟酒,拆开覆在软木塞上的铁丝网。一手按着瓶塞,一手缓慢旋转瓶身,瓶塞会自然地被瓶内气压慢慢顶出,然后“啵”的一声弹出来,随后瓶口出现淡淡的白雾。

也许是那抹白雾令人在意,在 2019 年《科学・进展》(Science Advances)的一篇文章里,物理学家化身“香槟学者”,突发奇想地用高速摄像机拍摄了香槟开瓶的瞬间。他们惊讶地发现,瓶塞弹出后,瓶中喷射的高压气流竟会形成超音速冲击波。

超音速冲击波,本质上是物体进行超音速运动时,会对周围介质(比如空气)产生扰动,从而不断在物体前方形成压缩气流。这些压缩气流携带了巨大的能量,会以超音速气浪的形式向四周冲击。

▲ 图片右上角为拍摄时间:从 583 微秒到 1000 微秒。高速摄像机捕捉到,马赫环(箭头所指位置)从离瓶口较近的图 A 位置,逐渐远离瓶口至图 E 位置,直到图 F 完全消散。(图片来源:原论文)

马赫环
气流通常是无色的,这意味着我们无法直接看到冲击波。那为何还能用摄像机捕捉到香槟瓶口的超音速冲击波呢?事实上,与其说我们看到了超音速冲击波,不如说是观察到了只有超音速气流才能形成的现象。

当你仔细观察这几张香槟开瓶瞬间的照片时,会发现有一条白线正逐渐远离瓶口,直至消散。而如果你从瓶口正上方向下看,会发现这条线其实是个圆环 —— 这就是马赫环(mach disk)。

如果你留心过超音速飞机起飞或者火箭发射,也许会注意到,它们的尾部总带有一串明亮的光环,这也是马赫环。火箭和飞机都需要喷射超音速气流来获得强大推力。喷出的超音速气流压力很高,所以当它从喷管喷入大气中时,会直接膨胀;但膨胀后的气流压力又会低于大气压,因此会再次被压缩。如此一来,超音速气流会在膨胀与压缩间往复循环,这个过程会形成膨胀波与压缩波,二者在传播过程中相遇叠加,就形成了一个个的圆环,也就是马赫环。

不难看出马赫环现象出现的必要条件:一是超音速气流;二是气流压力与环境压力不等。前者满足冲击波出现的条件;而后者能使气流发生变化,进而产生不同的波。

香槟瓶口的马赫环与火箭尾部的马赫环成因相同,但二者有一个显著区别:超音速气流的温度。香槟瓶塞弹出的瞬间,瓶内气流快速溢出,导致瓶内气压与温度骤降,二氧化碳和水蒸气混合物会凝结成冰晶,形成灰白色雾气。也因此,香槟瓶口的马赫环会出现在白雾中。而火箭喷射的气流温度过高,会点燃混于其中的少量燃料,让马赫环在其中格外耀眼。

瓶塞弹出的瞬间
然而,虽然知道香槟瓶口喷射的气流能超过音速、产生马赫环,但具体的过程和物理机制尚未明确。今年,在一篇发表在《流体力学》(Physics of Fluids)杂志的文章里,科学家通过计算机模拟,进一步揭示了在香槟瓶塞弹出的 1 毫秒(1000 微秒)中,冲击波形成、演变、最终消散的过程。

香槟酒富含二氧化碳,瓶中的气压约是大气压的 6 倍,瓶中压缩的二氧化碳气体会不断地向软木塞施加向外的推力,想将它顶出去。在稳定情况下,软木塞与瓶壁间的静摩擦力会与向外的推力相平衡。然而一旦你开始扭动软木塞,静摩擦力会迅速转变为动摩擦力,不再能与气压抗衡。瓶塞此时就如火箭一般,蓄势待发。

▲ 计算机模拟图像。从上至下,每行分别对应冲击波演化的第一阶段、第二阶段到第三阶段。第一行 500 微秒时,木塞刚刚弹出,气流只能沿着瓶塞与瓶口的缝隙横向膨胀;第二行 917 微秒时,木塞离瓶口一定距离,气流能直接喷射,但会与瓶塞碰撞形成弯曲的冲击波;第三行 1167 微秒时,瓶内外气压差降低,无法支撑气流以超音速逸出。从左至右,每列分别显示流速、气压和温度的空间分布。结合行与列变量,可以对应看出每一阶段的状态,及其对应不同变量的区间分布。(图片来源:原论文)

根据计算机模拟,软木塞弹出后的 1 毫秒中,超音速气流的变化可分为三个阶段描述:

软木塞弹出的第一阶段(600 微秒内),瓶内的二氧化碳气流会以超音速逸出,这个过程与火箭发射的气流加速过程极为相似。火箭尾部的喷管是两边宽中间窄的漏斗形状,也叫做拉瓦尔喷管(Laval nozzle)。引燃后加热的高压气流在通过喷管逐渐收窄的前半部分时,会不断压缩、加速。而香槟瓶颈处收窄的形状也起到了类似的效果,让气流在瓶口处加速至超音速。

就像人群堵塞在狭窄路口时行进速度缓慢,而一旦走到开阔空间会分散加速一样,气流经过狭窄路径压缩后进入到开阔空间,也会急于膨胀加速。因此高压的气流在逸出瓶口、进入相对低压的外界环境时,会获得超音速;而火箭气流则是在喷管后半部分就能达到超音速。与火箭不同的是,香槟瓶口的瓶塞由于运动速度相比气流过慢,会阻碍气流直接喷射。这一阶段的超音速气流只能沿着瓶塞与瓶口的缝隙,横向膨胀逸出,形成冠状的冲击波,同时出现马赫环现象。

软木塞离开瓶口的第二阶段(600-1000 微秒间),随着瓶内气体不断逸出,终于能像火箭气流一样径直喷射出去,随即会与稍远些的软木塞发生碰撞,从而形成弯曲的冲击波。

而到了第三阶段(超过 1000 微秒),酒瓶内的压力逐渐与大气压相平,无法维持瓶口处的压力差,气流失去了动力。因此喷射的气流将不断减速,直到低于音速,冲击波彻底消散。

源于生活的启发
这项有趣的研究将火箭发射与香槟开瓶关联到一起,不仅推动了“香槟学”研究进展,还能为一系列重要应用的研究提供参考,比如火箭发射和导弹发射的弹道学研究。这项研究也可以帮助开发水下航行器和风力涡轮机的工程师,让他们能更好地理解流体动力学(流动的物质在力作用下的运动规律)过程。

然而事实上,我们身边不只有香槟开瓶会产生超音速冲击波。不知你是否留意过生活中两种极具穿透力的声音:撕透明胶带时的“撕拉!”声,以及公园里甩鞭锻炼时的“啪!啪!”声。

如果大力地撕胶带,你会发现胶带总是被一截截地扯开,听上去是一段段的“撕拉”声。当你用力将胶带撕离附着表面时,胶带粘合剂会像弹簧一样拉伸,并储存弹性势能(所以无法连续地撕开)。在粘合剂“弹簧”承受不住更大的拉力断裂后,累积的弹性势能会立刻转化为胶带分裂边缘(附着胶带与分离胶带的分界线)的动能。

如果用高速摄像机拍摄这一过程,你会看到胶带分裂边缘会以每秒 650 到 900 米的速度运动,远超音速,甚至超过了战斗机的速度。这意味着附着胶带每一次积攒势能、而后剥离,都会释放微小的超音速冲击波。所以不难理解,在我们听来,一次次迷你音爆的叠加当然会很刺耳。

▲ 撕透明胶带时,总避免不了刺耳的“撕拉”声(图片来源:Pixabay)

而公园里响亮的“啪!啪!”甩鞭声,有人可能会误以为这是鞭子抽打在地上发出的声响,但其实这都是一个个在空中爆发的迷你超音速冲击波。人在用力甩动鞭子时,会将动能传递给鞭子。通常鞭子手柄部分更粗、质量也更大,当动能沿着柔软的鞭身传递到又细又轻的鞭梢时,为保证动量守恒,鞭梢速度会远大于手柄的速度,很容易超过声速,从而形成局部的超音速冲击波。

这个现象,也被称为鞭梢效应。它与香槟开瓶一样,源于生活,但也蕴含着复杂的物理机制。

现在,如果有人问:香槟,胶带和鞭子三者有何共通之处?

你知道该怎样回答了吗?

论文链接:

https://www.science.org/doi/10.1126/sciadv.aav5528

https://aip.scitation.org/doi/abs/10.1063/5.0089774

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.068005

参考链接:

https://www.smithsonianmag.com/smart-news/what-really-happens-when-you-pop-champagne-according-to-science-180980218/

https://www.livescience.com/champagne-bottle-opening-creates-shockwaves.html

https://www.decanter.com/wine-news/german-scientist-logs-champagne-cork-speed-75173/

https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&;dbname=CJFD9495&filename=LXYS505.026

本文来自微信公众号:环球科学 (ID:huanqiukexue),撰文 :不周 审校 : 二七

有一种情况可以证明,世界上最锋利的物体无法切割任何东西。我们都用刀切过苹果,刀很锋利对我们来说是显而易见的事情。但如果工具很锋利,那么它应该很容易切割东西才对。所以“世界上最锋利的物体无法切割任何东西”这句话听起来就很违反直觉,那这到底是怎么回事呢?

就像其他大多数概念一样,科学家们试图确定锋利的定义。听到“锋利”一词时可能首先想到的物体是刀,研究该形状的确切细节及其几何特性,为我们定义锋利度提供了一个起点。如果我们放大刀刃,就会发现它有一种楔形。直觉上,楔形的“锋利度”似乎归结为两个主要属性:它有多尖以及它有多窄。因此,科学家们创造了“尖锐度”和“狭窄度”的具体测量方法,来试图定义锋利度!

从尖锐度开始,如果我们放大刀的边缘,我们会发现楔形的尖端不会收缩到无限小的点。相反,它最后会收缩成一条微小的曲线。将该曲线视为形成圆的一部分,该圆的半径可以最终决定了刀的边缘有多小。这里有一个词,叫做边缘半径,这是我们描述刀刃“尖锐度”的几何方式。较小的边缘半径意味着更小的曲线,刀缘更接近理想的完美尖角形状。

但是边缘半径并不是锋利度的全部,因为即使是具有相同半径的刀,厚度也可能不同。因此,为了让“边缘半径”有用,我们还必须确定“窄度”部分。这由所谓的楔角定义:楔形的两个平面之间的角度。较小的角度意味着更薄的楔形,这通常意味着更锋利的刀片。

如果一个刀片具有固定的小楔角,那么边缘半径就可以确定锋利度。例如,某些外科手术刀的蓝宝石刀片边缘半径只有至 25 纳米,相当于只有只有几百个原子!由于刀片如此锋利,蓝宝石手术刀留下的疤痕实际上比钢手术刀愈合得更快。此外,刀片由坚硬的蓝宝石制成,非常耐用。

但即使是这些超锋利的蓝宝石手术刀也不是最锋利的,一种更锋利的刀片是由黑曜石制成的。黑曜石是一种火山玻璃,可以制作成边缘半径仅为 3 纳米的刀刃。这相当于只有几十个原子,使其成为我们所知的最锋利的物体之一。今天。我们仍然使用黑曜石刀片进行某些类型的手术,因为它们的超锋利度可以在不需要施加太大压力的情况下进行切割。事实上,黑曜石刀片甚至可以将单个细胞切成两半。因此,边缘半径和楔角结合起来,很好地描述了黑曜石令人难以置信的切割能力。

所以,这给了我们一个错觉,认为定义锋利很简单。不幸的是,到目前为止我们讨论的几何属性有一些缺点,比如描述针的锋利度,由于它们的尖端也会收缩到一个曲面,我们可以使用边缘半径的概念。但与刀不同的是,它们没有形成楔形的两个平面,因此楔角在这里没有意义。

我们可以使用其他类型的角度,但它们都有自己的问题。例如,对于注射针,倾斜边与直边之间存在一个角度,称为“斜角”。2012 年的一项研究发现,在同一根针上设置多个斜角可以提高其刺穿皮肤的能力,这对于减轻疼痛和提高疗效非常重要。这与我们对锋利度的直觉相违背。

至于边缘半径,我们在人造工具上实现的最小半径是钨纳米针。它是扫描隧道显微镜的探针,可在针和表面之间产生跳跃的微小电流。通过这样做,针尖可以识别表面上单个原子的位置,并帮助我们建立材料外观的图像。这个探针的尖端只有一个原子宽,我们不能得到比这更小的了。也正是由于这种小得离谱的半径,吉尼斯世界纪录大全宣布钨纳米针是世界上最锋利的人造物体。

但正如我们一开始所说的,这个针不能切割或刺穿任何东西!一个只有一个原子厚的物体非常脆,即使它有超级“锋利度”也不会提高针的切割能力或刺穿能力。如果我们试图对它施加任何压力,它就会折断。

这不仅仅是钨纳米针的问题,我们前面提到的那些黑曜石外科手术刀也不会一直使用,因为它们也很脆,如果外科医生不小心,就有折断的风险。因此,当描述切割或穿孔的能力时,锋利度并一定适用。它仅描述对象的几何形状,而不是其功能。

https://mp.weixin.qq.com/s/zU_WBX-COwBpjBaqWdoklQ